
Introduction to Functional Programming using Haskell

Errata

April 7, 1999

Chapter 1

page 3, line 1 Replace ? square 14198724 by ? square 14197824.

page 9, line 14 Replace “hit the the interrupt key” by “hit the interrupt key”.

page 22, line 8 Insufficient space between names in square square 3. [This unfortunates
space compression occurs in various places throughout the text.]

page 23, line 14 “Look again the previous . . . ” should read “Look again at the previous
. . . ”

page 25, line 22 Replace by “The link between the two is the requirement that the im-
plementation satisfies . . . ”

Chapter 2

page 33, lines 1 - 8 The text is confused. There are two solutions:

Either replace it by “We can declare Bool to be an instance of Ord by writing

instance Ord Bool where

False ≤ False = True

False ≤ True = True

True ≤ False = False

True ≤ True = True

The alternative definition, namely x ≤ y = not x ∨ y , doesn’t quite work in the way
expected (see Exercise 2.1.2). ”

Or replace lines 7 and 8 by “As an alternative definition we can write x < y =
not x ∧ y .

page 33, line 20 “Note that the two occurrences of . . . ”

page 34 Delete Exercise 2.1.2.

1

page 35 In Exercise 2.1.9 replace the last sentence by “Show that these properties hold
for the definition of () on the well-defined values of Bool .

page 35, line -2 “a different entity from the decimal number 7;. . . ”

page 37, line -4 “but does not depend . . . ”

pages 39 – 41 Systematically interchange the names toEnum and fromEnum in the whole
of Section 2.3.

page 43, line 12 Interchange toEnum and fromEnum.

page 46, line -2 The type of plus should be

plus :: (α→ β, γ → δ)→ Either α γ → Either β δ

page 47 Note that Haskell uses the name either rather than case.

Chapter 3

page 73, line 14 Replace h (foldn h b (Succ n)) by h (foldn h b n).

page 79, line 16 Replace by

Rat x y Rat u v = (x × v) (y × u)

page 81, lines 4–5 Replace sentence beginning “Among possible representations” with
“Among possible representations we can choose one in which −5 ≤ z < 5 and abs y

is as small as possible.

page 81, line 25 “since programs that avoid case analyses are clearer and simpler than
those that do not, . . . ”

page 83, line 23 The definition of done should read

done (m, n) = (m + 1 n)

page 85, line 8 In the definition of y3 a division by 2 is missing:

y3 = (1.4167 + 2/1.4167)/2 = 1.4142157

2

Chapter 4

page 103, line 14 First line in definition of init should read: init [x] = [].

page 112, line 10 “This equation is valid provided p and q are strict functions.”

page 114, line 4 Definition of pyth should read

pyth (x , y , z) = (x × x + y × y z × z)

page 116, line 14 Last line in definition of zip should read:

zip (x : xs) (y : ys) = (x , y) : zip xs ys

page 116, line 18 “the scalar product of two vectors x and y of size n is defined by . . . ”

page 121, line 22 The function zip can be defined as an instance of foldr : we have zip =
foldr f e where

e ys = []

f x g [] = []

f x g (y : ys) = (x , y) : g ys

page 124, line 12 “the first is clearer, while the second is more efficient.”

page 124, line -6 The type of scanl should read:

scanl :: (β → α→ β)→ β → [α]→ [β]

page 125, line -1 Replace a by e in equations involving scanr .

page 126, lines 9,10 Replace a by e in equations involving scanr .

page 127 Exercise 4.5.9 should read “What list does scanl (/) 1 [1..n] produce?”

page 125 In Exercise 4.5.11 the type of convert should be Liste α→ [α].

page 129, line -4 “Both sides simplify to x ⊕ y .”

page 129, line -1 Replace z ; xs by z : xs .

page 130, line -7 Missing period at end of paragraph.

page 137 In Exercise 4.6.10 the law should read

foldl1 (⊕) · scanl (⊗) e = fst · foldl (⊙) (e, e)

3

Chapter 5

page 146, line 9 Replace assign xs by assign.

page 146, line 12 The definition of mktriple should read

mktriple (xn, xm) xr = (xn, xm, xr)

page 148, line 18 The last line of the definition of sortby should read:

sortby f (x : y : xs)

= mergeby f (cross (sortby f , sortby f) (divide (x : y : xs)))

page 163, line 12 The three = signs on the right-hand side of the definition of leap should
be signs.

page 165, lines 12,15 The types of stackWith and spreadWith should be

stackWith :: Height → [Picture]→ Picture

spreadWith :: Width → [Picture]→ Picture

page 167, line 16 Replace entries (d , s) with just entries .

page 167, line 23 In the definition of dnames the conversion to type Picture is omitted,
so prefix the right-hand side with row .

Chapter 6

page 185, lines -6 – -1 Replace definition of fork by

fork :: Atree α→ Atree α→ Atree α
fork xt yt = Fork (lsize xt) xt yt

lsize :: Atree α→ Int

lsize (Leaf x) = 1
lsize (Fork n xt yt) = n + lsizeyt

page 186, line 6 The two occurrences of mkBtree should be replaced by mkAtree.

page 187 In Exercise 6.1.3 the definition of subtrees should read

subtrees :: Btree α→ [Btree α]
subtrees (Leaf x) = [Leaf x]
subtrees (Fork xt yt) = [Fork xt yt] ++ subtrees xt ++ subtrees yt

page 188, line 9 The type of member should read

member :: Ord α⇒ α→ Stree α→ Bool

4

page 188, line 15 Space compressed in member x xt .

page 188, line 17 The type of height should read

height :: Ord α⇒ Stree α→ Int

page 190, line -10 The identity should read:

xs ++ ys = xs ++ [head ys] ++ tail ys

page 191, line -1 Exercise 6.2.4 should read “Prove that inordered (insert x xt) = True

for all finite binary search trees xt .

page 193, line -11 The type of heapify should read

heapify :: Ord α⇒ Htree α→ Htree α

page 193, line -6 The type of sift should read

sift :: Ord α⇒ α→ Htree α→ Htree α→ Htree α

page 196, lines 13 – 17 Omit the local definition of maxlist , and insert the following
sentence in the text: “Recall that maxlist = foldl1 (max).

page 197, line -5 The left-hand expression should read: f (g(x , y), z , h(t)).

page 200, line -6 The type of combine should read: combine :: [[[α]]]→ [[α]].

page 201, line 8 Same correction as above.

page 205, line -3 The type declaration of CodeTable should read:

type CodeTable = [(Char , [Bit], Int)]

page 206, line 19 Replace local definition by where (ys , zs) = span (x) xs .

Chapter 7

page 231, line 8 The type of dfcat should read:

dfcat :: [Rose α]→ [α]→ [α]

page 236, line 8 The second line in the definition of fills should read:

fills (w : ws) = [us : vss | (us , vs)← splits (w : ws); vss ← fills vs]

page 236, line -1 Space compression in fill vs .

5

Chapter 8

page 256, line 16 “The second implementation therefore has a different efficiency from
the first,. . . ”

page 256, line 21 The right-hand side of the second axiom for back should be

join x (back (join y xq))

page 272, lines 13,15 Remove closing parenthesis from right-hand expressions.

page 278, line 12 The type of fork should be

fork :: α→ Htree α→ Htree α→ Htree α

page 279, line 1 The type of delMin should be

delMin :: Ord α⇒ Htree α→ Htree α

page 279, line 3 The type of union should be

union :: Ord α⇒ Htree α→ Htree α→ Htree α

page 280, line 6 The type of mkBag should be

mkBag :: Ord α⇒ [α]→ Htree α

page 280, line 8 The type of mkTwo should be

mkTwo :: Ord α⇒ Int → [α]→ (Htree α, [α])

page 284, line 9 Replace right-hand side of otherwise branch by

Fork n xt (update yt (k −m) x)

page 288, line 4 Replace nullys by null ys .

page 288, line 22 It should be pointed out that the definition of abstr is exactly the same
as in the implementation of Section 8.1 since

ys ++ reverse xs = reverse (xs ++ reverse ys)

page 289, line 14 Replace reverseys by reverse ys .

page 290, line -1 Replace last line by

(3, 0, rot (rot [] [1] []) [3, 2] [], [])

page 291, line 2 Replace by

(3, 3, rot (rot [] [1] []) [3, 2] [], [6, 5, 4])

page 291, line 4 Replace by

(7, 0, rot (rot (rot [] [1] []) [3, 2] []) [7, 6, 5, 4] [], [])

page 291, line 6 Replace by

(7, 7, rot (rot (rot [] [1] []) [3, 2] []) [7, 6, 5, 4] [], [14, 13..8])

6

Chapter 9

page 296, line 17 “the computer determines the first four elements . . . ”

Chapter 10

page 330, line 13 Should add “where C may be empty”.

page 342 In Exercise 10.2.2 the type definition should read

newtype Count α = CNT (α,Counter)

Chapter 11

page 365, line -10 The definition should read

p orelse q = MkP f

where f s = if null ps then apply q s else ps

where ps = apply p s

page 365, line -6 The operator orelse does not satisfy the distributive law of plus.

page 368, line -1 Replace ✄ by ≫.

page 373 In Exercise 11.4.1 add “for deterministic parsers p and q”.

Chapter 12

page 384, line -11 Type of notuple should read

notuple :: Parser [Expr]

Appendix

page 411, line -1 Replace by head (x : xs) = x .

7

