
DEPARTMENT OF

COMPUTER
SCIENCE

Analysis and Simulation of the
Transputer Microprocessor
Candidate Number 1052856
Computer Science (Part B)
Trinity 2023

Supervisor:
Professor Alex Rogers

4996 words

Winston Chang Liu

Abstract
The Transputer was a class of processors released by INMOS dur-

ing the 1980s that provided hardware support for concurrent pro-

cesses. This project investigates the features of the T414, the first

32-bit Transputer, including its internal stack machine architecture,

implementation of internal and external communication channels,

support for static and dynamic procedure calls, and conditional

flow using guarded alternatives. It also presents a newly standard-

ised Transputer Assembly syntax, alongside the Transputer Assem-

bler and Multi-processor Simulator (TAMS), with which different

assembly programming techniques and concurrent tasks are evalu-

ated. By analysing these programs using TAMS, it becomes clear

that while there is much value in the concurrency support provided

by the T414, its stack machine design severely limits the usefulness

of its registers, vastly increasing the frequency of slow memory ac-

cesses.

1

Contents

1 Introduction 4

1.1 Contributions . 4

2 Background 5

2.1 Sequential Processes . 5

2.1.1 Registers and the Stack Machine 5

2.1.2 Memory and Workspaces . 7

2.1.3 Machine Code . 8

2.1.4 Procedures . 10

2.2 Concurrent Processes . 12

2.2.1 Process and Timer Queues . 12

2.2.2 Process Cycling and Timeslices 15

2.2.3 High Priority Process Interrupts 16

2.2.4 Internal Communications . 17

2.2.5 External Communications . 18

2.2.6 Guarded Alternatives . 19

3 Transputer Assembler and Multi-processor Simulator 22

3.1 Standardized Transputer Assembly 22

3.1.1 Assembly Syntax . 23

3.1.2 Operand Types . 23

3.1.3 Operations & Macros . 24

3.1.4 Assembler Directives . 25

3.2 Assembler . 27

3.2.1 Instruction Expansion . 29

3.2.2 Label Address Calculation . 31

3.3 Processor Simulation . 32

3.3.1 Processor Stepping . 33

2

3.3.2 Timer Updates . 34

3.3.3 Instruction Execution . 35

3.3.4 Internal Process Management 36

3.4 External Communication . 38

3.4.1 Links & Channels . 38

3.5 Debugging Tools . 41

3.5.1 Memory Explorer . 41

3.5.2 Test Suite . 42

4 Evaluation of Example Programs 43

4.1 Using TAMS . 43

4.2 Writing Transputer Programs in Assembly 46

4.2.1 Static Chains . 46

4.2.2 Dynamic Procedure Calls . 48

4.3 Concurrent Programs . 52

4.3.1 Guarded Alternatives . 53

4.3.2 Bag of Tasks . 56

4.4 Evaluation . 65

5 Conclusion 66

5.1 Reflection . 66

5.2 Future Work . 68

References 69

3

1 Introduction

The Transputer was a series of microprocessors produced by INMOS under the

paradigm of hardware-facilitated concurrency. A core belief of its creators were

that through the support of parallel processing within the processors themselves, fa-

cilitated by the concurrency-focused Occam programming language, the Transputer

family of products would adapt to new computing demands for decades to come [1].

These microprocessors, however, have failed to withstand the test of time, losing

to the dominance of modern architectures such as x86 and ARM. Nevertheless, their

legacy remains, with renewed interest in concurrent systems and parallel computing

with the emergence of languages inspired by Occam such as Go[2].

1.1 Contributions

This project takes a deep dive into the inner workings of the T414 Processor, pro-

viding concise explanations for its features by extracting its design principals and

implementation details from the official documentation.

The project also presents a standardised format for Transputer assembly based

on the original instruction set of the T414, along with a new assembler and simula-

tor for the T414, named the Transputer Assembler and Multi-processor Simulator

(TAMS for short). TAMS provides explicit support for multi-processor simulations,

as well as direct assembly programming and, features not commonly seen in existing

simulators [3] [4] [5] [6].

Using Transputer assembly and TAMS, this project demonstrates the ability for

networks of interconnected Transputer processors to communicate with each other

and complete complex tasks. It also reveals the limitations of its stack registers,

which only serve to increase the number of memory accesses, thereby acting as a

bottleneck to complex programs.

4

2 Background

This chapter describes the architecture and instruction set of the first ever 32-bit

Transputer microprocessor released by INMOS: the T414. This is the variant on

which the assembler and simulator presented in this report is based on.

Many of the details about the Transputer architecture and instruction set have

been derived from a publication titled “Transputer Instruction Set: A Compilter

Writer’s Guide” (hereby refered to as ACWG) [7]. The initial release of the pro-

cessor family had come with much fanfare surrounding Occam, but pressure from

the industry eventually gave way to compilers for popular languages such as C and

FORTRAN, along with the publication of ACWG [8].

2.1 Sequential Processes

2.1.1 Registers and the Stack Machine

The T414 carried 6 basic registers, 3 of which were general purpose registers used

for arithmetic calculations. All registers hold 32-bit values.

Register Purpose
Areg Evaluation Stack (Top)
Breg Evaluation Stack
Creg Evaluation Stack (Bottom)
Iptr Instruction Pointer (Program Counter)
Wptr Workspace Pointer (Stack Pointer equivalent)
Oreg Operand Accumulator

Table 1: Main Transputer Registers

The 3 general purpose registers organised as part of an evaluation stack, with

Areg at the top and Creg at the bottom.

5

The stack is treated purely as an evaluation stage, and values deemed useful

beyond just single calculations are generally stored in memory. Instructions operate

on the stack, like so (Fig. 1):

Before Evaluation
x and y popped

Areg

Breg

Creg

x

y

z

Instruction f

After Evaluation
f(x, y) pushed

Areg

Breg

Creg

f(x,y)

z

(z)

Figure 1: Stack operation involving 2 operands and 1 output value

6

2.1.2 Memory and Workspaces

The T414 supports up to 4GB of memory, byte-indexed using 32-bit addresses.

Words are 4 bytes (32 bits) each.

External Links
0x80000000

0x8000001f
Event 0x80000020

Interrupted
Save Location

0x80000024

0x80000047

Reserved

Internal Memory

0x80000048

0x800007ff
4-byte Word

x+0
x+1
x+2
x+3

Byte
(Little-endian)

Least Sig.

Most Sig.

External Memory
(Negative)

0x80000800

0xffffffff

External Memory
(Positive)

0x00000000

0x7fffff6b

Addresses wrap from
negative to positive

Memory Config 0x7fffff6c
0x7ffffffd

ROM Boot-
strapping Code 0x7ffffffe

0x7fffffff

Figure 2: Transputer address space

7

Memory is divided into internal and external sections, with internal memory

starting from the lowest address. Addresses are signed; they start at 0x80000000 and

count up to 0xffffffff before wrapping around to 0x00000000. The address space

is completely little-endian.

The spaces marked as reserved (Fig. 2) are not usually accessible directly, and

are only modified indirectly through specific instructions for external communication

or process interrupts; usable memory starts at 0x80000048.

2.1.3 Machine Code

Transputer machine code is executed by the processor one byte at a time, with

each byte containing one of 16 core functions (Table 2) in the upper nibble, and an

operand between 0 and 15 in the lower nibble.

8
High

c
Low

Core Function
0x8: adc

(Add Constant)

Operand
0xc (12)

adc 12
(Add 12 to Areg)

Figure 3: Single byte instruction

With each instruction only taking a single byte, the Transputer needs to employ

additional techniques to accommodate operands outside of the limited range, and

to expand the number of permissible operations beyond the core 16.

8

Func Code Name Effect
j 0x0 Jump Add operand to Iptr

ldlp 0x1 Load Local Pointer Pushes Wptr + Oreg
pfix 0x2 Prefix Explained below
ldnl 0x3 Load Non-Local Pushes word from M[Areg + Oreg]
ldc 0x4 Load Constant Pushes immediate value

ldnlp 0x5 Load Non-Local Pointer Pushes pointer to M[Areg + Oreg]
nfix 0x6 Negative Prefix Explained below
ldl 0x7 Load Local Pushes word from M[Wptr + Oreg]
adc 0x8 Add Constant Adds operand to Areg
call 0x9 Call Procedure Call (See 2.1.4)
cj 0xa Conditional Jump Jump only if Areg = 0

ajw 0xb Adjust Workspace Offset Wptr by operand
eqc 0xc Equals Constant Push boolean value (Areg = Oreg)
stl 0xd Store Local Store Areg at M[Wptr + Oreg]
stnl 0xe Store Non-Local Store Areg at M[Breg + Oreg]
opr 0xf Operate Explained below

Table 2: Transputer Core Functions

To expand the domain of permissible operands, the pfix function is added before

the main core function to indicate additional digits to the left. During execution,

these additional digits are stored in Oreg. Figure 4 illustrates an example:

Oreg: 0x0

pfix 0xa 2 a

Oreg: 0xa

pfix 0xb 2 b

Oreg: 0xab

adc 0xc 8 c Executed as: adc 0xabc

Oreg: 0x0 (Cleared)

Figure 4: Prefix-extended operands

9

To deal with negative numbers, the nfix function is used. It inverts the value

stored in Oreg and shifts it to the left by 4 bits, before adding a new nibble to the

accumulated operand. Figure 5 illustrates such an example:

Oreg: 0x0

pfix 0x1 2 1

Oreg: 0x1

nfix 0x2 6 2

Oreg: 0xffffffe2 (-30)

adc 0x3 8 3 Executed as: adc 0xfffffe23 (-477)

Oreg: 0x0 (Cleared)

Figure 5: Negative operands

Beyond the core 16 functions, we can use the opr function, which selects an addi-

tional operation based on the operand. The T414 provides 87 additional operations

which use values from the evaluation stack or workspace as their arguments.

2.1.4 Procedures

Within a sequential process, the Transputer provides mechanisms for calling proce-

dures, in a similar manner to functions in other architectures.

Parameters are passed using the evaluation stack, with additional parameters

placed into the workspace. Upon executing call, Wptr is moved 4 words down, and

the evaluation stack and return address are copied into the newly allocated space.

The procedure may choose to shift Wptr down further should it need more space

(Fig. 6).

10

··
·

··
·

Wptr▶

Before
Procedure Call
(Caller Workspace)

Iptr (Ret. Addr.)
Areg
Breg
Creg

(Old Workspace)
Additional
Parameters

Main
Parameters

Wptr▶ Shift down to
allocate more
space for vari-
ablesAfter

Procedure Call
(Callee Workspace)

Figure 6: Workspace shifting during procedure calls

Since jump offsets are hardcoded in machine code, we need to use stubs to deal

with dynamic procedure calling. When procedures are passed as arguments to other

procedures, we call the stub procedure, which then uses the gcall operation to swap

Areg and Ireg, essentially jumping to the supplied procedure (Fig. 7).

··
·

··
·

··
·

Wptr▶

Areg: p0
Ireg: caller

Caller

Ret. Addr.
p0

p1

p2

Proc. Addr.

Ret. Addr.
p0

p1

p2

Wptr▶ Wptr▶
Areg: proc
Ireg: stub

Stub
proc. copied to Areg

Areg: (stub)
Ireg: proc

Procedure
Takes over stub

Figure 7: Calling procedures using a stub

11

2.2 Concurrent Processes

2.2.1 Process and Timer Queues

Processes are identified by their workspace addresses, which are always even, allow-

ing us to use the final address bit to indicate priority. The top half of the workspace

is used to store program variables, while the bottom half is reserved for specific

purposes (Fig. 8).

w-5

w-4

w-3

w-2

w-1

Target Time
Time that process is waiting
for

Timer State
Timer guard state, or ptr to
next process in timer queue

Next process in timer
queue (with same
priority)

Message / Alt State
Message address, or
Alternative guard state

Message source/
receiving address
(When communicat-
ing)

Queue Ptr
Pointer to next process in
scheduling queue

Next scheduled
process (with same
priority)

Iptr
Iptr when process
descheduled

w+0 Workspace AddressWptr
Processes are
referred to by
the address
(w+0) of their
workspace.

···

Local Variables

Space is
allocated
for these

words only
if necessary

Figure 8: Process Workspace

12

Processes can either be high (0) or low (1) priority. Each priority has its own

separate FIFO timer queue and process queue. Active processes are pushed to the

back and executed at the front. Processes waiting for specific target times are placed

into the timer queue.

w-2
(w-1)
w+0

w-2
(w-1)
w+0

w-2
(w-1)
w+0

Front Pointer
High: FPtr0
Low: FPtr1

· · ·

Back Pointer
High: BPtr0
Low: BPtr1

Figure 9: Process Queue

w-5 = α

w-4

··
·

w+0

w-5 = β

w-4

··
·

w+0

w-5 = ζ

··
·

w+0

Front Pointer
High: TPtrLoc0
Low: TPtrLoc1

Clock Registers
Clock: t ≤ α
Next Event: α

· · ·

(No back pointer)

NotProcess.p

Condition: α ≤ β ≤ · · · ≤ ζ

Figure 10: Timer Queue

Process queues exist as linked lists in memory, with registers pointing to their

first and last elements (Fig. 9). When process queues are empty, Head pointers are

set to NotProcess.p = 0x80000000 for empty queues.

Timer queues do not have back pointers; the last element points to NotProcess.p.

Processes are arranged in ascending order based on their target time, as illustrated

13

in Figure 10.

Two additional registers are used as clocks, with the high priority clock (Clock0)

running 64 times as fast as the low priority clock (Clock1). There are also registers

to indicate the earliest target time.

In all, there are 10 registers dedicated to process management (Table 3):

Register Type High Low
Process Queue Front Pointer FPtr0 FPtr1
Process Queue Back Pointer FPtr0 BPtr1
Process Clock Clock0 Clock1
Next Event Time TNextReg0 TNextReg1
Timer Queue Front Pointer TPtrLoc0 TPtrLoc1

Table 3: Process Management Registers

14

2.2.2 Process Cycling and Timeslices

Transputers run instructions sequentially; low priority processes are cycled to sim-

ulate current active processes (Fig. 11):

Process Queue (Low Priority)

L1 L2 L3 L4 · · ·Current
Process L0

(1) Process runs for long enough to be rescheduled (to the back)

(2) Next process loaded

Figure 11: Cycling Low Priority Processes

Low priority processes are executed for 2 timeslices (equivalent to 5120 cycles)

before they are rescheduled on the next descheduling point instruction (Table 4).

These instructions signal to the processor that it is safe to switch to another process.

Name Description Name Description
in Input Message stoperr Stop on Error
out Output Message altwt Alt Wait

outbyte Output Byte j Jump
outword Output Word lend Loop End
taltwt Timer Alt Wait endp End Process

tin Timer Input stopp Stop Process

Table 4: Descheduling Point Instructions

15

2.2.3 High Priority Process Interrupts

The high priority queue is always emptied before any low priority processes are

allowed to execute, even if it means interrupting a low priority process. The register

values of interrupted processes are temporarily stored in a fixed memory location

(0x80000024 to 0x80000047).

High Priority Queue

Low Priority Queue

· · ·

· · ·

L1 L2 L3

H0

Current
Process

L0

Interrupted
Process

(L0)

(1) High priority
process queued

(2) Low pri-
ority process
interrupted

(3) High priority
process executed

(4) Interrupted
process resumed

Untouched
(Waiting for
next cycle)

Figure 12: High Priority Process Interrupt

16

2.2.4 Internal Communications

Processes on the same processor can communicate between each other using internal

channels. Internal channels take the form of a single word in memory, the channel

word, which contains the channel status.

Channel words are first initialized to NotProcess.p to signify an inactive channel.

The two connected processes can then communicate like so (Fig. 13):

Initiator

(1) Initia-
tor checks

channel state

write(2) Initiator
enables channel,
schedules target

Mem

(5) Target writes
to receiving
address, or
copies from

message address

(7) Initiator
rescheduled,

communication
complete

w-3

··
·

Workspace

Channel Word

NotProcess.p

read

Initiator w

read

NotProcess.p

Target

(3) Target
scheduled,
checks
channel state

(4) Target follows
channel word to

initiator workspace

write

(6) Target
closes
channel,
continues
running

Figure 13: Channel communication

17

2.2.5 External Communications

Processes on different processors can also communicate via external physical links.

Links contain their own registers, used to store message addresses and sizes. Com-

munication occurs in the following order, with the two processes descheduled during

message transfer (Fig. 14):

(1) Sending
Processor

Message address & size

Link

Receiving address & size

Receiving
Processor

(2) Sending
Processor

read
Link

write Receiving
Processor

(3) Sending
Processor

Reschedule sending process

Link

Reschedule receiving process

Receiving
Processor

Figure 14: External Communication

18

2.2.6 Guarded Alternatives

Transputers also support guarded alternatives, where processes may branch into

different paths depending on the conditions of alternative guards, of which there are

three types: Skip Guards, Channel Guards, and Timer Guards. All three

are associated with a boolean expression; channel guards are triggered by channel

communications, and timer guards are triggered when the priority clock reaches a

target time.

We can illustrate this with a CSP1 process, using a new After symbol for

indicating reaching a specific target time on the priority timer.

Take, for example, the following CSP process P , where branches B0, B1, and

B2 are placed behind a skip, channel, and timer guard respectively:

P = e0 &B0

□ e1 & (c?v → B1)

□ e2 & (After t → B2)

1Communicating Sequential Processes, based on the work of Tony Hoare [9] [10]

19

The three guards are first enabled in order, before the process is descheduled

during the alt wait (Fig. 15). Skip guards allow us to skip the wait if the necessary

conditions are fulfilled.

Alt Start alt (or talt if there are timer guards)
Set Alt State to ENABLING
Set Target Time to TIME_NOT_SET (if talt)

Enable Branches

B0 (Skip Guard) enbs (Enable Skip)
if e0: Set Alt State to READY

B1 (Channel Guard) enbc (Enable Channel)
if e1: Initiate channel M[Breg]

B2 (Timer Guard) enbt (Enable Timer)
if e2: Put current process on timer queue

Set Target Time to min(t,Target Time)

Alt Wait altwt (or taltwt if there are timer guards)
if Alt State ̸= READY:

Set Alt State to WAITING and deschedule process

Figure 15: Enabling Branches

20

After the wait, each branch is disabled, where they check if they have been chosen

(Fig. 16). The process then jumps to the chosen branch.

Disable Branches

B0 (Skip Guard) diss (Disable Skip)
if e0 and no branch chosen:

Set M[Wptr] = B0 address − altend address

B1 (Channel Guard) disc (Disable Channel)
if e1 and no branch chosen and channel closed:

Set M[Wptr] = B1 address − altend address

B2 (Timer Guard) dist (Disable Timer)
if e2 and no branch chosen and target time reached:

Set M[Wptr] = B2 address − altend address

Alt End
altend
Relative jump using value stored at M[Wptr]

Figure 16: Disabling Branches

21

3 Transputer Assembler and Multi-processor Sim-

ulator

The program that has been written to simulate the T414 instruction set is called

the Transputer Assembler and Multi-processor Simulator (TAMS). It is a console

program implemented in C++20 and consists of a command-based interface and

separate utility modules, as illustrated in Figure 17.

Links

Processors

L1

P1

L2

P2

L3

P3

L4

P4

Creates processor
instances

Assembler

Reads and writes
processor memories

Memory Explorer

Controls
processor ticking

Simulator

Entry Point

Main Command Interface

load command mem command run command

test command

Test Suite Creates its own Processor
and Link instances

Figure 17: TAMS Program Structure

3.1 Standardized Transputer Assembly

Existing publications generally use nonstandardised, assembler-independent pseudo-

assembly [7] [11] that do not contain contain the necessary features we need for an

assembler; we will thus have to create a new standard.

22

3.1.1 Assembly Syntax

We first start by examining examples of pseudo-assembly in ACWG, such as the

following:

Snippet 1 Pseudo-Assembly Example on Concurrent Process Initialization
1 ldc 3; stl 1; # Immediate value operands
2 ldc L5 - L6; ldpi; # Label offset operands
3 L6: stl 0;
4 ldc L1 - L2; ldlp WP;
5 startp;
6 L2: ldc L3 - L4; ldlp WQ;
7 startp;
8 L4: R; ldlp 0; endp; # R, P, Q are abstracted sequences of processes,
9 L1: P; ldlp -WP; endp;

10 L3: Q; ldlp -WQ; endp; # Label operands
11 L5:

We can identify all three formats of operands from this example: immediate

values, labels, and label offsets.

3.1.2 Operand Types

The same operand format can be interpreted differently depending on the instruc-

tion. For instance, the jump instruction (j) shifts Iptr in bytes, while the adjust

workspace (ajw) instruction shifts Wptr in words. There are three operand types,

summarised in Table 5. Note that Addr[x] refers to the byte address of x, while

Addr[Next] refers to the byte address of the following instruction.

Operand Type Imm. n Label b Difference a - b
Raw Value n Addr[b] Addr[a] - Addr[b]
Offset (Bytes) n Addr[b] - Addr[Next] Addr[a] - Addr[b]
Offset (Words) n - (Addr[a] - Addr[b]) / 4

Table 5: Operand Type Interpretations

23

When a byte offset operand type is supplied with a single label, we subtract the

address of the next instruction. This allows us to write jump instructions with just

single labels.

We can classify all core functions based on their operand type (Table 6):

Function Name Operand Type
j Jump Offset (Bytes)

ldlp Load Local Pointer Offset (Words)
pfix Prefix -
ldnl Load Non-Local Offset (Words)
ldc Load Constant Raw Value

ldnlp Load Non-Local Pointer Offset (Words)
nfix Negative Prefix -
ldl Load Local Offset (Words)
adc Add Constant Raw Value

call Call Offset (Bytes)
cj Conditional Jump Offset (Bytes)
ajw Adjust Workspace Offset (Words)
eqc Equals Constant Raw Value
stl Store Local Offset (Words)

stnl Store Non-Local Offset (Words)
opr Operate Raw Value

Table 6: Core Function Operand Types

3.1.3 Operations & Macros

As explored in 2.1.3, we use opr to select from a list of additional operation. We can

write those additional operations in mnemonic form in assembly, but they would

need to be expanded when generating machine code (Fig. 18).

startp
Mnemonic Form

Expansion opr 0xd
opr Form

Figure 18: Mnemonic Expansion

24

When the operation is selected using a value larger than 0xf, the assembler

would have to expand it further into prefix form (Fig. 19).

and
Mnemonic Form

Expansion opr 0x46
opr Form

Prefixing pfix 0x4; opr 0x6
Prefixed Form

Figure 19: Operands outside of range

3.1.4 Assembler Directives

We also have to add a few additional assembler directives to indicate initial processor

conditions, and code/workspace locations. Table 7 summarises these directives:

Directive Type Purpose
%istart a Preamble Initial Iptr value
%wstart a Preamble Initial Wptr value
.addr a Instruction Skip to a specific address
.break Instruction Debug breakpoint
.zero n Instruction Insert empty bytes
.byte b Instruction Insert raw byte data
.word w Instruction Insert raw word data

Table 7: Operand Type Interpretations

Preamble-type directives can only be written at the top of the assembly file,

while Instruction-type directives are parsed like instructions and can be inserted

into code.

25

The syntax is as follows:

Snippet 2 Demonstration of Assembler Directives
1 %istart 0x80000060 # Iptr starts at 0x80000060
2 %wstart 0x80000204 # Wptr starts at 0x80000204
3
4 .addr 0x80000060 # Start writing the following code at 0x80000060
5 main:
6 ldl 0
7 .break # Breakpoint for debugging
8 adc 1
9 .byte 0xff # Write the raw byte 0xff

10
11 .addr 0x80000200 # Start writing the following code at 0x80000200
12 .zero 4 # Insert 4 bytes of 0x00
13 .word 0x00000001 # Insert raw word 0x00000001

26

3.2 Assembler

The Assembler module in TAMS accessible via the load command in the main

command interface. It converts programs written in assembly into machine code

(Fig. 20):

Assembly
File

Raw Text Parsing /
Code Lookup

Initial Iptr,
Wptr values Processor

Registers

Instruction Objects

Instruction
Expansion

Partially Prefixed Instructions

Label Address
Calculation

Fully Prefixed Instructions

Machine Code
Conversion

Machine
Code Bytes Processor

Memory

Figure 20: Assembler Structure

27

Assembling programs first start with parsing and code lookup, where text is

converted into Instruction Objects (Struct instances) using a lookup table, defined

as such:

Snippet 3 Instruction Struct (assembler.h)
11 struct Instruction {
12 bool specialOp = false; // Is a directive
13 uint32_t code = 0; // Function (instruction) as byte code
14 int bytes = 0; // Estimated byte size after expansion
15 int selfLabel = -1; // Label ID of current instruction, if any
16 bool hasOperand = false; // Instruction has operand
17 int operand = 0; // Candidate operand
18 int labelTarget = -1; // Jump to label (using label ID)
19 int labelRef = -1; // Jump counted relative to this label
20 };

The initial pointer register values are also read and saved at this point; instruc-

tions in mnemonic form have already been prefixed in the lookup table. They are

then sent through a series of steps to evaluate their operands, before conversion to

machine code.

28

3.2.1 Instruction Expansion

Instruction expansion is done in multiple stages, starting with instructions that do

not contain labels (Fig. 21):

Instruction Expansion

Instruction Objects

Directives Instructions

Additional
Operations

Core
Functions

without
Label

Operands
Directive
Expansion
if .byte or .word
to raw bytes

else if .zero
to zero string repr

else
leave unchanged

Instruction
Prefixing

with Label
Operands
(Expanded later)

Mnemonic
Expansion

Partially Prefixed Instructions

Figure 21: Instruction Expansion Step

Of all the assembler directives, .byte and .word are immediately expanded into

raw bytes; .addr and .break can only be expanded after label addresses are finalised.

29

.zero instructions are saved as instruction objects like so:

Snippet 4 Intermediate Representation of .zero n

1 Instruction {
2 specialOp = true;
3 code = 0xffff04;
4 bytes = n; // Estimated byte size
5 hasOperand = false;
6 operand = n; // Candidate operand
7 // Other fields inherited from parsed instruction object
8 };

Operation codes are fully expanded using a lookup table. Core functions are

prefixed based on their operand, using the algorithm below, where f is the function

to be prefixed, and ∼ x represents a bitwise not:

Algorithm 1 Prefixing constants
1: function Prefix(f, x)
2: if 0 ≤ x < 16 then
3: return f(x)
4: else if x ≥ 16 then
5: return Prefix(pfix, x >> 4); f(x & 0xF)
6: else if x < 0 then
7: return Prefix(nfix, ∼ x); f(x & 0xF)

30

3.2.2 Label Address Calculation

As the length of a prefixed instruction is determined by the magnitude of its operand,

the size of two expanded instructions can be mutually dependent (Fig. 22):

j label_b

··
·

label_b:
ldc 2

Address of ldc 2 influences
number of prefix instruc-
tions needed to encode
j label_bSize of prefixed jump

function can push
back address of ldc 2

Figure 22: Label Address Dependencies

This prevents us from easily expanding instructions with labels in a single pass.

We thus adapt the following iterative refinement process provided by ACWG, mod-

ified to work with directives:

Algorithm 2 Iterative Label Address Calculation
1: Initialize map M : label → address
2: Assign fixed size estimates to instructions with known sizes
3: Assign 0 to instructions with label operands
4: while Estimates changed do
5: Update label addresses in M based on estimates
6: Calculate values of operands in the form a - b
7: Update estimates based on new operand values

31

To determine the size of all instructions with label operands, we use the following

algorithm:

Algorithm 3 Finding prefixed instruction size based on operand value
1: function PrefixSize(operand)
2: if 0 ≤ operand < 16 then
3: return 1
4: let est = 1
5: let temp = operand
6: while temp /∈ [0, 15] do
7: est = est + 1
8: if temp < 0 then temp = ∼temp
9: temp = temp » 4

10: return est

Lastly, .zero and .addr are expanded into full strings of zeroes of the required

lengths.

3.3 Processor Simulation

To support multiple processors running simultaneously, processors are defined as

a class, and instances of processors can be spawned by loading multiple assembly

programs.

32

3.3.1 Processor Stepping

With multiple processes stepped together externally by the Simulator class, proces-

sor instances have to provide a step function to simulate the passing of a single clock

cycle. They store their internal states, updated on each step function call (Fig. 23):

Step Function Call

No ongoing process

Find New Process

Running Process

Execute Instruction

Update Internal
State & Timers

End Step

Figure 23: Processor Step Flow

TAMS provides two ways of stepping through simulations: the step command,

where all processors execute a single cycle, and the next command, which skips to

the next breakpoint, unless interrupted by an error flag.

33

3.3.2 Timer Updates

To facilitate the timekeeping, we also introduce a set of helper counters and flags:

Name Name in Code Description
Running Timers runningTimers Whether timers are running (Boolean)
Cycle Count cycles Total cycles executed
Timeslice Cycles tsCycles Cycles elapsed in current timeslice
Process Timeslices timeslice Timeslices elapsed in current process
Low Clock µs loClockUs µs elapsed in current low clock interval
µs Cycles usCycles Cycles elapsed in current µs interval
Delayed Cycles pastCycles Cycles since last executed instruction
Buffered Cycles bufferedCycles Cycles needed for current instruction

Table 8: Timekeeping Variables

This allows us to coordinate all the timers like so (Fig. 24):

Time Units

Cycles

ᙰᙳcycles

ᙰᙳtsCycles ᙰᙳusCycles

if usCycles = 5

High
Priority Ticks
(1 µs = 5 Cycles)

usCycles = 0
if runningTimers:

ᙰᙳClock0 (High)
ᙰᙳloClockUs

if loClockUs = 64
Low

Priority Ticks
(320 Cycles)

ᙰᙳClock1 (Low)
loClockUs = 0

if
ts
Cy
cl
es

=
51
20

Timeslices
(5120 Cycles)

ᙰᙳtimeslice
tsCycles = 0

Figure 24: Timer Update Flow

34

3.3.3 Instruction Execution

As different instructions take different numbers of cycles to execute, we have to

predict execution length and buffer the effects of instructions to simulate their be-

haviour (Fig. 25):

Check if there is a
buffered instruction
(bufferedCycles > 0)

false

Predict cycle count
for next instruction
funcCycleCount()

true

Check if delay is complete
(pastCycles + 1 ᙟᙠ bufferedCycles)

false

Increment Counter
ᙰᙳpastCycles

true

Reset Counters
pastCycles = 0

bufferedCycles = 0

Execute Core Function
handleFuncCode()

if executing opr

Execute Operation
handleOpCode()

Figure 25: Instruction Execution Flow

TAMS only executes buffered instructions after the delay such that any changes

to registers or memory only happen after the full execution time period has elapsed.

35

3.3.4 Internal Process Management

To support the process scheduling, additional helper functions and flags have been

added to the Processor class:

• Descheduling Check Flag (bool descheduleCheck), indicates when it is safe

to perform a descheduling check to cycle low priority processes;

• Schedule Function (Processorᆖᆘschedule), called when a process becomes

active and needs to be queued;

• Timer Queue Function (ProcessorᆖᆘqueueTimer), called when a process

starts waiting for a target time;

• Starting Process Flag (bool startingProc), used to indicate that no process

is running and the next process should start.

36

These functions do not interfere with the current running process; they set up

the internal processor state for the next cycle (Fig. 26):

Find New Process
startingProc stays true if no new
processes found

Execute Instruction
During Execution:
→ descheduleCheck = true if
executing j or lend
→ schedule() if startp or runp
needs to schedule a new process
→ queueTimer() if tin or taltwt
needs to queue a timed process
→ startingProc = true if current
process to be descheduled

Update Internal State & Timers

Update External Links
During Update:
→ schedule() processes that have
completed communications

if descheduleCheck

Execute Deschedule Check
During Check:
→ startingProc = true if low
priority and timeslice ≥ 2Update Timers

During Update:
→ schedule() processes on timer
queue that have reached target
time

Figure 26: Process Management Flow

Notably, both descheduling points and process starts are implemented as boolean

flags rather than functions, so that we can delay the corresponding state changes to

after instruction execution.

37

3.4 External Communication

To facilitate external communication between multiple processors, physical links

have been abstracted within TAMS using the Link class.

3.4.1 Links & Channels

In TAMS, link instances connect two processors with two channels like so (Fig. 27):

Left
Processor Left to Right channel

Right to Left channel
Right

Processor

Figure 27: Link Channels in TAMS

Link
bool busy
Channel (Left to Right)
queue<uint8_t> buffer
bool inReady
bool outReady
Port (Input)
uint32_t msgDesc (Process descriptor)
uint32_t msgAddr (Message address)
uint32_t msgLength (Message byte length)
uint32_t bytesSent (Bytes already sent)
uint32_t bytesLeft (Bytes left to send)
int wordShift (Bit shift for word buffering)
uint32_t wordBuffer (Word buffer for output port)

Port (Output) - same fields as input port

Channel (Right to Left) ...

Port (Input) ...

Port (Output) ...

Figure 28: Link Structure
3.4.1

38

To facilitate communication, each link contains a number of variables; this in-

cludes registers that were already present on the original hardware, and additional

helper variables. This is summarised above in Figure .

Since alternatives require us to synchronise the two sides before the receiver calls

in, we have to use additional readiness indicators (Fig. 29):

Sender Process Link Receiver Process

out sets
outReady to true

Process
descheduled

enbc sets
inReady to true

Initiates altwt,
descheduled

Both sides
ready

Rescheduled,
branches & calls in

Process
descheduled

Data
Transfer

Rescheduled after
message sent

Rescheduled after
message received

Figure 29: Alternative Guard Synchronisation

39

To send messages, channels alternate between two states depending on the

buffer, which holds one byte (Fig. 30):

Message Byte Buffer empty
Receive only

Alternates every cycle
until message fully
sent

Buffer full
Send only Buffered

Byte

Word
Buffer

Every
4 bytes

Receiver
Memory

Figure 30: Link Data Transfer

40

3.5 Debugging Tools

TAMS contains two sets of tools for debugging programs - a memory explorer for

checking values in memory, and a testing suite for automated testing of programs

in bulk.

3.5.1 Memory Explorer

The memory explorer is accessed through the mem command and provides its own

command interface to navigate between different pages of memory. Since processor

instances provide public functions for querying the values of bytes in memory, the

memory explorer simply retrieves the values it needs that way.

Snippet 5 Memory Explorer Interface
1 MEMORY EXPLORER
2
3 0 1 2 3 4 5 6 7 8 9 A B ᆥᆧ
4 0x80000000 |[00] 00 00 00 00 00 00 00 00 00 00 00 ᆥᆧ
5 |[j] j j j j j j j j j j j ᆥᆧ
6 0x80000010 | 00 00 00 00 00 00 00 00 00 00 00 00 ᆥᆧ
7 | j j j j j j j j j j j j ᆥᆧ
8 0x80000020 | 00 00 00 00 00 00 00 00 00 00 00 00 ᆥᆧ
9 | j j j j j j j j j j j j ᆥᆧ
10 0x80000030 | 00 00 00 00 00 00 00 00 00 00 00 00 ᆥᆧ
11 | j j j j j j j j j j j j ᆥᆧ
12 0x80000040 | 00 00 00 00 00 00 00 00 00 00 00 00 ᆥᆧ
13 | j j j j j j j j j j j j ᆥᆧ
14 0x80000050 | 00 00 00 00 00 00 00 00 00 00 00 00 ᆥᆧ
15 | j j j j j j j j j j j j ᆥᆧ
16 0x80000060 | 27 ' 2f / 2f / 2f / 2f / 2f / 6f o 40 @ d0 43 C d1 70 p ᆥᆧ
17 | pfix pfix pfix pfix pfix pfix nfix ldc stl ldc stl ldl ᆥᆧ
18 0x80000070 | 00 00 00 00 00 00 00 00 00 00 00 00 ᆥᆧ
19 | j j j j j j j j j j j j ᆥᆧ
20
21 Instruction Pointer: 0x80000060
22 Workspace Pointer: 0x80000200
23
24 (80000000: 00) mem>

Using the tool, we can navigate and edit bytes in memory using a command

interface. This is facilitated by a cursor (indicated by [] brackets). Each byte within

memory is also translated into its relevant ASCII symbol and function mnemonic

where appropriate.

One intentional design choice is to keep the processor stepping tool (the sim-

41

ulator) and the memory explorer separate; since memory space is typically very

large, the simulator only logs changes to specific memory addresses, with any tasks

involving viewing the full memory space relegated to the memory explorer.

3.5.2 Test Suite

To systematically test features in the simulator to ensure that programs reliably

produce their expected output, TAMS also includes a separate testing suite that

automatically iterates through a list of predefined tests, each configured to create

its own set of processor and link instances, with checks on its final state after the

processors halt.

This is defined using a custom .tamst filetype:

Snippet 6 TAMS Test Configuration
1 proc ./programs/extsend.tams send
2 proc ./programs/extrecv.tams recv
3
4 link send 0 recv 0
5
6 test send Areg 0
7 test recv Areg 4
8 test send Wptr 0x80000204
9 test send Iptr 0x80000069

10 test send flag 0
11 test recv 0x80000204 3

All tests defined within the test directory will be run when the test command

is executed. Each test creates an independent environment where processors and

links are created from scratch using the proc and link functions. After running and

hitting a breakpoint, or halting, checks are run using the test function, before the

environment is deleted in preparation for the next test.

Checks can be done on registers (test send Areg 0), specific memory locations

(test recv 0x80000204 3), and error flags (test send flag 0) on each processor.

42

4 Evaluation of Example Programs

To fully explore the unique instruction set and architecture of the Transputer, it

helps to reimplement familiar programs within the instruction set so that we may

fully grasp its limitations and advantages. In particular, the stack machine de-

sign and the built-in process management lend themselves to rather interesting ap-

proaches when writing with the instruction set. We will first explore sequential

programs, before moving on to concurrent ones.

4.1 Using TAMS

After starting up TAMS, users are greeted with the main command interface, from

which they are able to access top-level commands. These are listed in the help page:

Snippet 7 TAMS Startup Message & Help
1 Transputer Assembler & Multiprocessor Simulator v0.4.0
2 Type 'help' for a list of commands.
3 tams> help
4 TAMS Command Help:
5 clear - Clear all processor instances
6 create [Memory size] [Processor name] - Create new empty processor instance
7 exit - Exit TAMS
8 help - List all commands
9 link <Left Proc> <Left Port> <Right Proc> <Right Port> - Create a link between two

processors↪→

10 list - List all processor instances
11 load <File> [Processor name] - Load an assembly file into a new processor instance
12 mem [Processor index] - Explore the memory of a processor instance
13 run - Open the simulator interface for running processors

To load and run a program, we must first load the TAMS file containing the

assembly code using the load command. This creates a new processor instance and

automatically assembles the code, which is written directly into the processor.

43

The load command can be done as many times as required to create multiple

processors, and the list command displays all created processors:

Snippet 8 Loading programs on TAMS
1 tams> load ./programs/extsend.tams send
2 Loaded program with no warnings.
3 tams> load ./programs/extrecv.tams recv
4 Loaded program with no warnings.
5 tams> list
6 Processor instances:
7 Index Name
8 0 send
9 1 recv

We can then create any necessary external links using the link command, spec-

ifying which ports to use for both processors:

Snippet 9 Creating external links on TAMS
1 tams> link send 0 recv 0
2 Created link with no warnings.

To start the simulation, we can use the run command, which brings us into

the simulator interface, where we can either use the step command to advance all

processors by one clock cycle, or next command to skip to the next breakpoint or

halt. The following snippet shows the output from running step once, with both

processors executing a single byte.

44

Snippet 10 Running simulations on TAMS
1 tams> run
2 send> Ran func pfix with nibble 7 at address 0x80000060
3 recv> Ran func pfix with nibble 7 at address 0x80000060
4
5 send:
6 | A: 0x00000000 | B: 0x00000000 | C: 0x00000000 | W: 0x80000200 | I: 0x80000061 |

O: 0x00000070 | TS: 1 (0), Cycles: 1↪→

7 | Hi: 0x00000000 | Lo: 0x00000000 | Break: No | Priority: Low | Error: No |
Clock: No | StartProc: No | Intr: 00000000↪→

8 | hiQueue: None
9 | loQueue: None
10 | hiTimerQueue: None
11 | loTimerQueue: None
12
13 recv:
14 | A: 0x00000000 | B: 0x00000000 | C: 0x00000000 | W: 0x80000200 | I: 0x80000061 |

O: 0x00000070 | TS: 1 (0), Cycles: 1↪→

15 | Hi: 0x00000000 | Lo: 0x00000000 | Break: No | Priority: Low | Error: No |
Clock: No | StartProc: No | Intr: 00000000↪→

16 | hiQueue: None
17 | loQueue: None
18 | hiTimerQueue: None
19 | loTimerQueue: None
20

Snippet 10 shows an example of the simulator interface, where all relevant queues

and registers are displayed for each processor.

45

4.2 Writing Transputer Programs in Assembly

Programs written for the Transputer can be wildly different from those written for

popular modern assembly languages due to the evaluation stack and concurrency

support. Here, we shall analyse the Transputer instruction set from the perspective

of a potential assembly programmer.

4.2.1 Static Chains

It is often convenient to pass a pointer to the original workspace to allow procedures

to access local variables in a different scope. In the following program, we have im-

plemented a Fibonacci sequence calculator, using the following iterative algorithm:

Algorithm 4 Iterative Fibonacci
1: function Main
2: a := 0
3: b := 1
4: n := 0

5: function IterFib
6: temp := b
7: b := a + b
8: a := temp

9: while n ̸= 20 do
10: IterFib()
11: n := n + 1

The inner function IterFib needs access to a and b from the outer scope Main,

thus a static link is required.

46

We may write the program in assembly like so:

Snippet 11 Fibonacci iteration using a procedure call
1 %istart 0x80000060
2 %wstart 0x80000200
3
4 .addr 0x80000060
5 ldc 0; stl 1 # a in w+1
6 ldc 1; stl 2 # b in w+2
7 ldc 0; stl 3 # n in w+3
8 loop:
9 ldlp 0

10 call iterfib
11 ldl 3; adc 1; stl 3 # increment n
12 ldl 3; eqc 20; cj loop # break if n = 20
13 .break
14
15 iterfib:
16 ajw -1 # Leave one space for temp store
17 ldl 2; ldnl 1 # Load a
18 ldl 2; ldnl 2 # Load b
19 stl 0; ldl 0 # Save temp = b
20 add # b' = a + b
21 ldl 2; stnl 2 # Store b'
22 ldl 0
23 ldl 2; stnl 1 # Store a' = temp in new position
24 ajw 1
25 ret

Static link tracing is done with ldl 2, followed by either ldnl (Lines 17, 18) or

stnl (21, 23) for loading or saving.

47

4.2.2 Dynamic Procedure Calls

As explained in 2.1.4, calling procedures passed as arguments requires the use of the

gcall instruction and a stub procedure. We can demonstrate this in the following

program, where we calculate a Collatz Conjecture sequence, defined as such:

xn+1 =

xn

2
if xn ≡ 0 (mod 2)

3xn + 1 if xn ≡ 1 (mod 2)

It has been conjectured that any starting number x0 eventually reaches 1 [12].

We have chosen an arbitrary starting number 39.

The pseudocode is as follows:

Algorithm 5 Collatz with Dynamic Procedure Calls
1: function Main
2: x := 39
3: n := 0

4: function Inc
5: x := 3x+ 1

6: function Dec
7: x := x / 2

8: function IterCollatz(Even, Odd)
9: if x ≡ 0 (mod 2) then Even()

10: else Odd()

11: while x ̸= 1 do
12: IterCollatz(Dec, Inc)
13: n := n + 1

48

Both Inc and Dec require access to x, and hence need a static link that point

back to the main scope (Fig. 31):

Main

IterCollatz

Inc

Static Links
Return Address

Return Address

Figure 31: Workspace Structure when calling Inc

Due to there only being 3 stack registers, we have chosen to pass a single static

link as opposed to the convention of bundling a separate link to each passed proce-

dure.

49

The main procedure, as well as the inc and dec procedures that modify x, are

defined as such:

Snippet 12 Main procedure in Collatz program
1 %istart 0x80000060
2 %wstart 0x80000200
3
4 .addr 0x80000060
5 ldc 39; stl 1 # x = 39 in w+1
6 ldc 0; stl 2 # counter in w+2
7 loop:
8 ldc inc # Odd proc: param 3
9 ldc dec # Even proc: param 2

10 ldlp 0 # Static link: param 1
11 call itercollatz
12 ldl 2; adc 1; stl 2
13 ldl 1; eqc 1; cj loop
14 .break
15
16 inc:
17 ldl 1; ldnl 1 # Follow static chain to previous term
18 ajw -1; stl 0; # Allocate one word
19 ldl 0; ldc 1; shl # x' = x ᙯ᙭ 2
20 ldl 0; add # + x
21 adc 1 # + 1
22 ajw 1 # Deallocate
23 ldl 1; stnl 1 # Follow static chain to store new term
24 ret
25
26 dec:
27 ldl 1; ldnl 1
28 ldc 1; shr # x' = x ᙦᙨ 2
29 ldl 1; stnl 1
30 ret

50

When defining itercollatz, we will need an additional stub procedure:

Snippet 13 Iteration procedure in Collatz program (Continued from previous snip-
pet)

32 stub:
33 ldl 2 # Load param 2
34 gcall # Call passed function
35
36 itercollatz:
37 ldl 1; ldnl 1 # Load previous term
38 ldc 1; and # Mask LSB
39 eqc 1; cj even
40 odd:
41 ldl 3 # Odd proc: param 3
42 ldl 1 # Static chain: param 0
43 call stub
44 ret
45 even:
46 ldl 2 # Even proc: param 2
47 ldl 1 # Static chain: param 0
48 call stub
49 ret

An indirect call to one of the passed procedures in itercollatz involves calling

stub (32-34) first, which swaps the procedure reference into Iptr using gcall (34).

51

4.3 Concurrent Programs

We can facilitate communication between processes using the following instructions

(Table 9), which send and receive messages using channels:

Instruction Areg Breg Creg
in Message Size (bytes) Channel Address Write to

out Message Size (bytes) Channel Address Message Address
outbyte Message Address Channel Address -
outword Message Address Channel Address -

Table 9: Channel instructions

outbyte and outword have fixed message sizes of 1 byte and 1 word respectively.

External link ports also have fixed positions in the address space (Table 10):

Port Outgoing (Sending) Incoming (Receiving)
0 0x80000000 0x80000010
1 0x80000004 0x80000014
2 0x80000008 0x80000018
3 0x8000000c 0x8000001c

Table 10: Channel addresses

These addresses can be quickly loaded onto the stack using the mint (Minimum

Integer) instruction, which pushes 0x80000000.

52

4.3.1 Guarded Alternatives

We can reimplement the Collatz Program earlier using the following process defined

in CSP:

C(x0) = P (x0) ||
{|num,odd,even|}

Q

P (x) = num!x →
(
odd → P (3x+ 1)□ even → P

(x
2

))
Q = num?x → ((x ≡ 0 (mod 2)& even → Q)□ (x ≡ 1 (mod 2)& odd → Q))

The program begins by first initialising the three required channels, before fork-

ing2 to form two separate processes, P and Q.

Snippet 14 Initialising channels for Guarded Alts Collatz
1 %istart 0x80000060
2 %wstart 0x80000300
3
4 .addr 0x80000060
5 mint; ldc num_chan;
6 stl 2; ldl 2; stnl 0 # Initialize num_chan
7 mint; ldc odd_chan;
8 stl 3; ldl 3; stnl 0 # Initialize odd_chan
9 mint; ldc even_chan;

10 stl 4; ldl 4; stnl 0 # Initialize even_chan
11 ldc 2; stl 1 # Store process count on w+4
12 ldc end - p_ref; ldpi # Relative jump from ref to end
13 p_ref:
14 stl 0 # Store end address
15 ldc proc_q - q_ref
16 ldlp q_ws - p_ws
17 startp # Start process Q
18 q_ref:
19 j proc_p

2Forking with startp requires us to store a program end address (14) and total process count
(11) locally.

53

As introduced in 2.2.6, the alternatives in P are enabled (28-29) and disabled

(31-32) in order, with altend jumping to the chosen branch (p_odd or p_even).

Snippet 15 Process P (Continued from previous snippet)
22 proc_p:
23 ldc 39; stl 5 # Term on w+5
24 ldc 0; stl 6 # Term index on w+6
25 p_loop:
26 ldl 2; ldl 5; outword # num_chan!term
27 alt
28 ldl 3; ldc 1; enbc # Enable odd_chan alt
29 ldl 4; ldc 1; enbc # Enable even_chan alt
30 altwt
31 ldl 3; ldc 1; ldc 0; disc # Disable odd_chan alt
32 ldl 4; ldc 1; ldc p_even - p_odd; disc # Disable even_chan alt
33 altend
34 p_odd:
35 ldlp 7; ldl 3; ldc 4; in # odd_chan ? x
36 ldl 5; ldc 3; mul # x * 3
37 ldc 1; add # + 1
38 stl 5 # save new x
39 j p_cond
40 p_even:
41 ldlp 7; ldl 4; ldc 4; in # even_chan ? x
42 ldl 5; ldc 1; shr # x ᙦᙨ 1
43 stl 5 # save new x
44 j p_cond
45 p_cond:
46 ldl 6; adc 1; stl 6 # Increment index
47 ldl 5; eqc 1; cj p_loop # Check if term is 1
48 end:
49 .break
50 .byte 0

54

Meanwhile, Q does the odd/even check and branches with a conditional jump

(64):

Snippet 16 Process Q (Continued from previous snippet)
53 proc_q:
54 ldc num_chan; stl 2 # num_chan on w+1
55 ldc odd_chan; stl 3 # odd_chan on w+2
56 ldc even_chan; stl 4 # even_chan on w+3
57 q_loop:
58 ldlp 1 # Receiving address w+1
59 ldl 2 # Target channel
60 ldc 4 # Message size (4 bytes)
61 in
62 ldl 1 # Load message
63 ldc 1; and # Mask LSB
64 eqc 1; cj q_even # Check even/odd
65 q_odd:
66 ldl 3; ldc 1; outword # odd_chan!1
67 j q_loop
68 q_even:
69 ldl 4; ldc 1; outword # even_chan!1
70 j q_loop

Lastly, we allocate space for all the processes and channels:

Snippet 17 Workspace Allocation (Continued from previous snippet)
73 .addr 0x80000300
74 p_ws:
75 .zero 128
76 q_ws:
77 .zero 128
78 num_chan:
79 .word 0
80 odd_chan:
81 .word 0
82 even_chan:
83 .word 0

55

4.3.2 Bag of Tasks

To demonstrate guarded alternatives, we turn to the bag of tasks idiom for dividing

tasks [13]. The following program multiply two matrices using 5 processors (Fig.

32):

Master

Worker
0

0

0

Worker
11 0

Worker
2

2

0

Worker
3 0 3

Figure 32: Port connections

Each task involves calculating the dot product of two vectors, resulting in a

single value in the result matrix.

56

We first analyse the program flow of each worker:

Snippet 18 Matrix Multiplication Worker Program
1 %istart 0x80000060
2 %wstart 0x80000200
3
4 .addr 0x80000060
5 main:
6 mint; stl 1 # Link 0 Out at w+1
7 mint; adc 0x10; stl 2 # Link 0 In at w+2
8 ldc data_left; stl 3 # Data storage 1
9 ldc data_top; stl 4 # Data storage 2

10 ldlp 5; ldl 2; ldc 4; in # Receive task size in w+5
11 loop:
12 ldl 3; ldl 2; ldl 5; in # Receive first data batch
13 ldl 4; ldl 2; ldl 5; in # Receive second data batch
14 ldc 0; stl 6 # Relative pointer at w+6
15 ldc 0; stl 7 # Sum at w+7
16 mul_loop:
17 ldl 3; ldl 6; add; ldnl 0 # Load multiplicand
18 ldl 4; ldl 6; add; ldnl 0 # Load multiplier
19 mul; ldl 7; add; stl 7 # Multiply and add to sum
20 ldl 6; ldnlp 1; stl 6 # Increment pointer
21 ldl 5; ldl 6; diff # total - evaluated
22 cj end
23 j mul_loop
24 end:
25 ldl 1; ldlp 7; outword # Send sum back
26 j loop
27
28
29 .addr 0x80000300
30 data_left:
31 .zero 256
32 data_top:
33 .zero 256

Workers are initialised with a vector size (10), before they repeatedly receive the

pairs of vectors to multiply (11-23). Results are sent back (25) before the worker

waits for the next task.

57

It helps to keep track of workspace usage like so (Table 11):

Location Usage
w+5 Vector size (Task size)
w+4 Pointer to Multiplier Vector
w+3 Pointer to Multiplicand Vector
w+2 Pointer to External Link 0 (In)
w+1 Pointer to External Link 0 (Out)
w+0 Unused

Table 11: Worker Program Workspace Usage

Workspace usage on the master processor is listed in table 12 below. Note that

we refer to each of the 4 ports by port offsets, which range from 0x00 for Port 0 to

0x0c for Port 3.

Location Usage
w+17 Worker 3 current task tracker (identified by result address)
w+16 Worker 2 current task tracker
w+15 Worker 1 current task tracker
w+14 Worker 0 current task tracker
w+13 Most recently received task
w+12 Result matrix end pointer
w+11 Result matrix current pointer
w+10 Matrix 2 end pointer
w+9 Matrix 2 current pointer
w+8 Matrix 1 end pointer
w+7 Matrix 1 current pointer
w+6 Result matrix start pointer
w+5 Matrix 2 start pointer
w+4 Matrix 1 start pointer
w+3 Matrix size (in bytes)
w+2 Row size (in bytes)
w+1 Row length (number of values)

Table 12: Worker Program Workspace Usage

58

All necessary pointers are prepared first:

Snippet 19 Matrix Multiplication Master Program
1 %istart 0x80000060
2 %wstart 0x80000400
3
4 .addr 0x80000060
5 main:
6 ldc 32; stl 1 # Dimensions stored in w+1
7 ldc 0; ldnlp 4; stl 2 # Dimensional jump stored in w+2
8 ldl 2; ldl 1; mul; stl 3 # Dimension limit stored in w+3
9 ldc data_left; stl 4 # Data storage 1 (Stored row-wise)

10 ldc data_top; stl 5 # Data storage 2 (Stored column-wise)
11 ldc data_result; stl 6 # Result storage (Stored row-wise)
12 ldl 4; stl 7 # Storage 1 data pointer at w+7
13 ldl 4; ldl 3; add; stl 8 # Storage 1 end pointer at w+8
14 ldl 5; stl 9 # Storage 2 data pointer at w+9
15 ldl 5; ldl 3; add; stl 10 # Storage 2 end pointer at w+10
16 ldl 6; stl 11 # Result storage pointer at w+11
17 ldl 6; ldl 3; add; stl 12 # Result end pointer at w+12
18 ldc 0; stl 13 # Most recently received result addr at w+13
19
20 # Initialize matrices
21 ldlp 0; call gen_matrix
22
23 # Initialize workers with dimensions
24 mint; ldlp 2; outword
25 mint; adc 0x04; ldlp 2; outword
26 mint; adc 0x08; ldlp 2; outword
27 mint; adc 0x0c; ldlp 2; outword
28
29 # Assign work to workers
30 ldc 0x00; ldlp 0; call send_worker
31 ldc 0x04; ldlp 0; call send_worker
32 ldc 0x08; ldlp 0; call send_worker
33 ldc 0x0c; ldlp 0; call send_worker

Note that we have chosen to store the multiplicand in row-major order and the

multiplier in column-major order to simplify the code.

59

To provide the program with two matrices to multiply, we have written the

procedure gen_matrix, which implements the following algorithm:

Algorithm 6 Matrix Generation
1: function GenMatrix
2: mat1_ptr := Matrix 1 start pointer
3: mat2_ptr := Matrix 2 start pointer
4: row_first := 1
5: data := 1

6: for row = 32 ... 1 do
7: for col = 32 ... 1 do
8: *mat1_ptr := data
9: *mat2_ptr := data

10: data := data + 1
11: mat1_ptr := mat1_ptr + 1
12: mat2_ptr := mat2_ptr + 1

13: row_first := row_first + 1
14: data := row_first

This produces the same constant matrix for both sides of the multiplication:

1 2 · · · 32

2 3 · · · 33

...

32 33 · · · 63

60

Implemented in Transputer assembly:

Snippet 20 Matrix Generation
72 gen_matrix:
73 ajw -6 # Allocate 6 words
74 ldl 7; ldnl 7; stl 0 # Matrix 1 pointer at w+0
75 ldl 7; ldnl 9; stl 1 # Matrix 2 pointer at w+1
76 ldl 7; ldnl 1; stl 2 # Row at w+2
77 ldl 2; stl 3 # Col at w+3
78 ldc 1; stl 4 # Row first num at w+4
79 ldl 4; stl 5 # Data at w+5
80 gen_col_loop:
81 ldl 5; ldl 0; stnl 0 # Write data to matrix 1
82 ldl 5; ldl 1; stnl 0 # Write data to matrix 2
83
84 ldl 5; adc 1; stl 5 # Increment data
85 ldl 0; ldnlp 1; stl 0 # Increment matrix 1 pointer
86 ldl 1; ldnlp 1; stl 1 # Increment matrix 2 pointer
87 ldl 3; adc -1; stl 3 # Decrement col
88
89 ldl 3; cj gen_row_loop # If col > 0, back to gen_col_loop
90 j gen_col_loop
91 gen_row_loop:
92 ldl 7; ldnl 1; stl 3 # Reset col
93 ldl 2; adc -1; stl 2 # Decrement row
94 ldl 4; adc 1; stl 4 # Inc row first num
95 ldl 4; stl 5 # Set data to row first num
96
97 ldl 2; cj gen_col_loop # If row > 0 then jump back
98 ajw 6
99 ret

61

The send_worker procedure is used to distribute a task to a worker:

Snippet 21 Worker Task Distribution
112 send_worker:
113 ldl 1; ldnl 7 # Get data address
114 mint; ldl 2; add # Get channel
115 ldl 1; ldnl 2 # Get size (in bytes)
116 out # Send multiplicants
117
118 ldl 1; ldnl 9
119 mint; ldl 2; add
120 ldl 1; ldnl 2
121 out # Send multipliers
122
123 ldl 1; ldnl 7
124 ldl 1; ldnl 2; add # Increment row pointer
125 ldl 1; stnl 7
126
127 ldl 1; ldnl 11 # Get task result pointer
128 ldl 1; ldnlp 12; ldl 2; add; stnl 0 # Assign task result pointer to worker
129 ldl 1; ldnl 11
130 ldl 1; ldnl 2; add # Increment result pointer
131 ldl 1; stnl 11
132
133 # If row pointer has reached the end, reset to start
134 ldl 1; ldnl 8
135 ldl 1; ldnl 7; diff
136 cj inc_col
137 ret
138
139 inc_col:
140 ldl 1; ldnl 4; ldl 1; stnl 7
141 ldl 1; ldnl 9 # Reset col index
142 ldl 1; ldnl 2; add
143 ldl 1; stnl 9 # Increase row
144 ret

After task assignment, it updates the current pointers to the next available task

(113-121), resetting the column index where necessary (133-144). It then updates

the task tracker for the worker in question (127-131).

62

After distributing the first set of tasks, the master program then enters its main

loop, using a guarded alternative to wait for the next available result.

Snippet 22 Master Program Main Loop
35 loop:
36 alt
37 mint; adc 0x10; ldc 1; enbc
38 mint; adc 0x14; ldc 1; enbc
39 mint; adc 0x18; ldc 1; enbc
40 mint; adc 0x1c; ldc 1; enbc
41 altwt
42 mint; adc 0x10; ldc 1; ldc 0; disc
43 mint; adc 0x14; ldc 1; ldc 0; disc
44 mint; adc 0x18; ldc 1; ldc 0; disc
45 mint; adc 0x1c; ldc 1; ldc 0; disc
46 altend
47
48 worker_a:
49 ldc 0x00; j distribute
50 worker_b:
51 ldc 0x04; j distribute
52 worker_c:
53 ldc 0x08; j distribute
54 worker_d:
55 ldc 0x0c
56 distribute:
57 ldlp 0
58 call receive_result # p0: static link, p1: worker offset
59 ldl 12; ldl 11; gt; cj skip_send
60 ldlp 0
61 call send_worker # Send task if there are still tasks
62 skip_send:
63 ldl 13; ldnlp 1; ldl 12; diff
64 cj end # If all tasks are done, end.
65 j loop # Else go back
66
67 end:
68 .break
69 .byte 0

Each branch pushes the relevant port offset onto the stack (48-55) before the

corresponding result is retrieved (58). We check if there are new tasks by checking

63

if the current pointer has reached the end (59), before sending a new task to the

same worker (61).

This setup fails to guarantee fairness; if worker 0 completes its tasks too quickly,

it will also receive the next task. Fairness would require dynamically changing the

enabling/disabling order.

After receiving each result, we use the current task trackers to figure out where

to write the result to:

Snippet 23 Receiving Result Products
101 receive_result:
102 ajw -1
103 ldl 2; ldnlp 14; ldl 3; add; ldnl 0 # Get data offset
104 ldl 2; stnl 13; ldl 2; ldnl 13 # Save data offset
105 mint; adc 0x10; ldl 3; add # Get in channel
106 ldc 4 # Word size (in bytes)
107 in
108 ldl 3 # Save branch to stack
109 ajw 1
110 ret

We also have to be mindful of preserving the port offset (108), to pass it to

send_worker later if necessary.

Lastly, space is allocated for 3 matrices:

Snippet 24 Allocating space for matrices
147 .addr 0x80000500
148 data_left:
149 .zero 2048
150 data_top:
151 .zero 2048
152 data_result:
153 .zero 2048

64

4.4 Evaluation

Having explored these programs, we are now in a better position to judge its many

design decisions from a modern perspective. With hardware support for concurrency

being a major focus of the processor, it had a lot of potential, which it had certainly

fulfilled to some extent with its accomplishments. We have seen this through our

bag of tasks example, but it can easily be expanded with a suitable compiler and

code written for more interconnected Transputers.

Nevertheless, its use of single-byte instructions and an evaluation stack leaves

much to be desired. Instructions dealing with large operands easily increase program

size, and their inability to access specific registers severely limits their conciseness.

Combined with a stack size of merely 3, many of the programs we have written are

choke full of memory addresses, serving as a major bottleneck for any program. This

is especially true when we compare the T414 to the architectures we have today,

where values such as loop counters can easily be stored into registers.

65

5 Conclusion

This report provides a concise summary of the unique features supported by the

T414, including its stack evaluation registers, procedure calling mechanisms, as well

as concurrent processes facilitated by process queues, communication channels, and

alternative guards.

A new syntax for Transputer assembly has been decided, in which programmers

can write, assemble, and test programs using the tools provided in TAMS. Through

its development, we have been provided with an opportunity to study the implica-

tions of the Transputer instruction set design, including label address calculation and

prefix expansion. The development of the simulator also revealed more intricacies

such as the mechanisms surrounding process management, multiprocessor stepping,

and external link data transfers.

Finally, by testing a variety of programs on TAMS, we have gained further insight

into the style of programs written in Transputer assembly, including the use of static

chains, planned workspace allocations, and the coordination of concurrent programs

through the use of channels. These programs have also exposed the downsides of

the Transputer architecture, such as its stack machine design and excessive memory

accesses.

5.1 Reflection

During the initial research process, finding relevant resources for the T414 turned

out to be far harder than I had expected, due to how fragmented and convoluted the

official documentation was, and how inaccessible they were compared to many of the

online resources today. This was one of the main motivating factors for me to write

the new summaries that constituted chapter 2 of this report - behind every diagram

was hours of research time poured into parsing the obtuse texts in publications from

INMOS.

66

On that note, I relate very much with John Roberts, the writer of “Transputer

Assembler Language Programming”, who noted back in 1992 that the frustration

he had after “struggling with nonstandard and sometimes cryptic documentation

from Inmos” had driven him to write an entire book [11]. Many key details essential

to implementing a simulator have simply been left out, and the summaries I wrote

proved to be extremely useful when I implemented TAMS.

Choosing to write TAMS in a language I’m comfortable with (C++) allowed me

to focus on the implementation rather than the quirks of the language. Implementing

the entire instruction set proved to be tedious and time-consuming, especially with

complex instructions that Inmos merely described the behaviours of in vague prose.

However, the largest time sink turned out to be ensuring that multiprocessor sim-

ulations worked independent of declaration order. This involved making sure that

all possible evaluation sequences in every possible channel configuration configura-

tion was thoroughly tested. Since the code keeps an ordered array of processors and

links which it iterates on each cycle, writing deterministic code that demonstrates

the same behaviour regardless of the array order meant that extra care had to be

put into program flows to allow interprocessor interactions to work independently

of the order in which they are processed.

Writing example programs for TAMS turned out to be a highly creative process

because of how different it was from what I was used to. Without random access

to all the registers, these programs required a lot more planning, especially with

workspace usage and alternative guard branches. This was necessary to prevent the

number of memory accesses from being further inflated. The slowness of memory

access is a major focal point for a lot of modern optimisation, but the apparent

indifference to it on the Transputer and the sheer number of registers it had dedicated

to managing concurrent processes instead really spoke to the lengths its designers

have gone to push their new vision of parallel processing.

67

5.2 Future Work

By referring to the implementation details in TAMS, it would be possible to attempt

to recreate the processor in hardware using FPGAs. However, it would be far more

interesting to explore the unrealised potential of the Transputer by designing an

architecture and instruction set inspired by the concurrency support of the T414,

without the limitations of a stack machine.

68

References

[1] INMOS Limited, IMS T414 engineering data, 2nd ed. INMOS Limited, 1989,

pp. 333–398.

[2] The Go Project, “Frequently asked questions (faq).” [Online]. Available:

https://go.dev/doc/faq

[3] G. Crate, “Transputer emulator.” [Online]. Available:

https://sites.google.com/site/transputeremulator/Home

[4] A. Pahi, “T4.” [Online]. Available: https://github.com/pahihu/t4

[5] G. Crate, “Jserver emulator.” [Online]. Available:

https://sites.google.com/site/transputeremulator/Home/jserver

[6] J. C. Highfield, “Inmos t414 transputer emulator.” [Online]. Available:

https://www.macintoshrepository.org/2118-inmos-t414-transputer-emulator

[7] INMOS Limited, Transputer instruction set: a compiler writer’s guide. New

York; London: Prentice-Hall, 1988.

[8] D. A. P. Mitchell, Inside the Transputer, ser. Computer Science Texts. Oxford:

Blackwell Scientific, 1990.

[9] C. A. R. Hoare, “Communicating sequential processes,” Com-

mun. ACM, vol. 21, no. 8, aug 1978. [Online]. Available:

https://doi.org/10.1145/359576.359585

[10] A. W. Roscoe, Understanding Concurrent Systems, ser. Texts in Computer

Science. New York; London: Springer, 2010.

[11] J. Roberts, Transputer Assembly Language Programming. Van Nostrand Rein-

hold Computer, 1992.

69

[12] Ş. Andrei and C. Masalagiu, “About the collatz conjecture,” Acta Informatica,

vol. 35, no. 2, pp. 167–179, 1998.

[13] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming. Reading, Massachusetts; Harlow: Harlow, 2000.

70

